[1]王东军,张红日,田之魁,等.中医舌诊数据挖掘文献的计量与可视化分析[J].西部中医药,2025,38(01):67-72.[doi:10.12174/j.issn.2096-9600.2025.01.14]
 WANG Dongjun,ZHANG Hongri,TIAN Zhikui,et al.Data Mining in TCM Tongue Diagnosis: the Literature of Bibliometric and Visualization Analysis[J].Western Journal of Traditional Chinese Medicine,2025,38(01):67-72.[doi:10.12174/j.issn.2096-9600.2025.01.14]
点击复制

中医舌诊数据挖掘文献的计量与可视化分析()
分享到:

《西部中医药》[ISSN:2096-9600/CN:62-1204/R]

卷:
38
期数:
2025年01期
页码:
67-72
栏目:
二次研究
出版日期:
2025-01-15

文章信息/Info

Title:
Data Mining in TCM Tongue Diagnosis: the Literature of Bibliometric and Visualization Analysis
作者:
王东军1,2, 张红日1, 田之魁2,3, 孙璇2, 关媛媛2, 周密2, 朱青青2, 周宗慧2, 王泓午2
1.华北理工大学中医学院,河北 唐山 063210
2.天津中医药大学健康科学与工程学院,天津 301617
3.齐鲁医药学院康复学院,山东 淄博 255000
Author(s):
WANG Dongjun1,2, ZHANG Hongri1, TIAN Zhikui2,3, SUN Xuan2, GUAN Yuanyuan2, ZHOU Mi2, ZHU Qingqing2, ZHOU Zonghui2, WANG Hongwu2
1.Traditional Chinese Medical College, North China University of Science and Technology, Tangshan 063210, China
2.School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
3.Rehabilitation School, Qilu Medical University, Zibo 255000, China
关键词:
中医舌诊数据挖掘CiteSpace可视化分析文献计量
Keywords:
TCM tongue diagnosisdata miningCiteSpacevisualization analysisbibliometrics
分类号:
R241.25
DOI:
10.12174/j.issn.2096-9600.2025.01.14
文献标志码:
A
摘要:
目的对中医舌诊数据挖掘进行系统的文献计量研究与可视化分析,探究其研究历史、现状、热点及发展趋势。 方法检索中国知网(CNKI)2000年1月1日至2019年12月31日“中医舌诊数据挖掘”研究领域相关文献,并进行文献计量学分析。应用CiteSpace软件对纳入文献进行作者、关键词、研究机构共现分析,并绘制相关可视化图谱。使用模块值和平均轮廓值评价可视化图谱的结构合理性,通过突现度和中介中心性辨识不同聚类中的作者、机构、关键词,对各主要关键词进行聚类分析。选择对数似然比(log-likelihood ratio,LLR)算法标记聚类,通过时间线视图展示不同聚类的相互影响以及关键词的时间跨度。 结果共获得文献461篇,发文量大的机构是北京中医药大学,发文量为57篇;中医舌诊数据挖掘文献研究领域初步形成了以北京中医药大学、上海中医药大学、南京中医药大学、天津中医药大学、山东中医药大学为代表的5个学术研究机构合作网络;上海中医药大学是中介中心性最高的机构为0.19,在机构合作网络中影响力最大;上海中医药大学、上海中医药大学附属龙华医院、天津中医药大学第二附属医院中介中心性较高(>0.1),许家佗、李刚、林凌均发文9篇,是3个最高产作者;数据挖掘、舌诊、舌象、中医证候、证候要素是中介中心性较高的高频关键词;关键词聚类分析形成了10个聚类标签。 结论中医舌诊数据挖掘文献研究数量呈稳定增长趋势,中医病证结合文本挖掘与四诊信息客观化研究、基于深度学习技术挖掘常见病证舌诊图像处理、应用人工智能大数据进行舌象处理与分析舌诊客观化、2型糖尿病流行病学特征与中医证型相关性研究、冠心病证候要素与中医客观化研究、数据挖掘名老中医临床经验及辨治规律研究等是该研究领域的热点。
Abstract:
ObjectiveTo survey the research history, status quo, hot spots and developmental trends of tongue diagnosis in TCM by conducting a systematic bibliometric study and visualization analysis of the literature on data mining of TCM tongue diagnosis. MethodsThe relevant literature in the research field of "data mining of TCM tongue diagnosis" was searched from CNKI between January 1, 2000 and December 31, 2019 to perform bibliometric analysis of the literature. CiteSpace software was applied to conduct the co-occurrence analysis of the author, keywords and research institutions of the included literature, and to draw the relevant visualization maps. Modular and average contour values were used to assess the structural soundness of visualisation maps, the authors, institutions, and keywords in different clusters were identified through the prominence and betweenness centrality, and cluster analysis was performed for each major keyword. Log-likelihood ratio algorithm was chosen to label the clusters, showing the interactions of the different clusters and the time span of the keywords through a timeline view. ResultsA total of 461 papers were obtained, the institution with the large number of articles was Beijing University of Chinese Medicine, with 57 articles; a cooperation network of five academic research institutions represented by Beijing University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine and Shandong University of Traditional Chinese Medicine has been initially formed in the field of TCM tongue diagnosis data mining literature research; Shanghai University of Traditional Chinese Medicine is the institution with the highest betweenness centrality at 0.19, the most influential one in the institutional cooperation network; Shanghai University of Traditional Chinese Medicine, Longhua Hospital Shanghai University of TCM and Second Affiliated Hospital of Tianjin University of TCM showed higher betweenness centrality (>0.1), Xu Jiatuo, Li Gang and Lin Ling are the most prolific authors, and they have published nine articles; data mining, tongue diagnosis, tongue manifestations, TCM syndromes, syndrome elements are high-frequency keywords with higher betweenness centrality; cluster analysis of the keywords formed ten cluster labels. ConclusionThe number of literature studies on TCM tongue diagnosis shows a steady growth trend, among them, the hot spots in the field of research cover objective research on TCM disease and syndrome combined with text mining and four diagnosis information, tongue diagnosis image processing based on deep learning technology, the application of artificial intelligence big data in tongue image-processing and tongue diagnosis objectification analysis, study on the correlation between epidemiological characteristics of type 2 diabetes mellitus and TCM patterns, syndrome elements of coronary heart disease and TCM objectification research, research on data mining of clinical experiences and the laws of syndrome differentiation and treatment.

相似文献/References:

[1]舒劲,武正权,王煜,等.名老中医王自立运脾系列方剂方证知识数据挖掘研究*[J].西部中医药,2013,26(02):45.
 SHU Jin,WU Zhengquan,WANG Yu,et al.Knowledge Mining of Prescriptions and Syndromes in Famous Veteran TCM Doctor WANG Zili's YunPi Prescriptions Series Based on Data Mining Method[J].Western Journal of Traditional Chinese Medicine,2013,26(01):45.
[2]滕璐灵,宋尧,张宝林.基于Apriori改进算法的中药处方分析技术[J].西部中医药,2014,27(05):48.
 TENG Luling,SONG Yao,ZHANG Baolin.The Technique of TCM Prescription Analysis Based on Apriori Improved Algorithm[J].Western Journal of Traditional Chinese Medicine,2014,27(01):48.
[3]王贵民,李廷保△.中医药治疗前列腺疾病用药规律的数据挖掘研究[J].西部中医药,2014,27(05):77.
 WANG Guimin,LI Tingbao.Data Mining Research on Medication Rules of TCM Treatment for Prostatic Diseases[J].Western Journal of Traditional Chinese Medicine,2014,27(01):77.
[4]马晓霞,李廷保△.基于数据挖掘治疗糖尿病的中药配伍体系研究[J].西部中医药,2015,28(03):100.
[5]刘莉莉.基于数据仓库的医院临床决策支持系统研究[J].西部中医药,2015,28(06):52.[doi:2015/6/16 0:00:00]
[6]潘 文.基于数据挖掘的治疗原发性痛经方证与核心药物配伍规律分析[J].西部中医药,2015,28(12):75.
[7]武正权,舒劲,王煜,等.名老中医王自立“清利通淋汤”方证知识数据挖掘研究[J].西部中医药,2017,30(01):49.
 WU Zhengquan,SHU Jin,WANG Yu,et al.Study on Data Mining of Syndrome Knowledge of Famous Veteran TCM Doctors WANG Zili′s QingLi TongLin Tang[J].Western Journal of Traditional Chinese Medicine,2017,30(01):49.
[8]陈俐禄.数据挖掘中药复方治疗痛经的用药规律[J].西部中医药,2016,29(04):86.
 CHEN Lilu.Medication Rules of Herbal Compounds in Treating Dysmenorrhea Based on Data Mining[J].Western Journal of Traditional Chinese Medicine,2016,29(01):86.
[9]王瑞祥.抛锚式教学在中医院校数据挖掘实验教学中的应用[J].西部中医药,2017,30(04):54.
 WANG Ruixiang.Application of Anchored Instruction in the Data Mining Experiment Teaching of TCM Colleges[J].Western Journal of Traditional Chinese Medicine,2017,30(01):54.
[10]晏光复,杨锡燕△.基于数据挖掘的老年高血压方剂用药规律分析[J].西部中医药,2018,31(02):62.
 YAN Guangfu,YANG Xiyan.Analysis of Medication Rules of the Prescriptions for Senile Hypertension based on Data Mining[J].Western Journal of Traditional Chinese Medicine,2018,31(01):62.

备注/Memo

备注/Memo:
王东军(1990—),男,博士学位,讲师。研究方向:中医诊断学证候客观化研究。国家重点研发计划中医药现代化研究重点专项(2017YFC1703305);河北省自然科学基金(H2023209049);河北省中医药管理局科研计划项目(2024355);华北理工大学重点研究项目(ZD-YG-202316,ZD-YG-202409)。
更新日期/Last Update: 2025-01-15